
17

Limits to Computation

This book describes many data structures that can be used in a wide variety of
problems. There are also many examples of efficient algorithms. In general, our
search algorithms strive to be at worst in O(log n) to find a record, while our sorting
algorithms strive to be in O(n log n). A few algorithms have higher asymptotic
complexity, such as Floyd’s all-pairs shortest-paths algorithm, whose running time
is Θ(n3).

We can solve many problems efficiently because we have available (and choose
to use) efficient algorithms. Given any problem for which you know some alg-
orithm, it is always possible to write an inefficient algorithm to “solve” the problem.
For example, consider a sorting algorithm that tests every possible permutation of
its input until it finds the correct permutation that provides a sorted list. The running
time for this algorithm would be unacceptably high, because it is proportional to
the number of permutations which is n! for n inputs. When solving the minimum-
cost spanning tree problem, if we were to test every possible subset of edges to
see which forms the shortest minimum spanning tree, the amount of work would
be proportional to 2|E| for a graph with |E| edges. Fortunately, for both of these
problems we have more clever algorithms that allow us to find answers (relatively)
quickly without explicitly testing every possible solution.

Unfortunately, there are many computing problems for which the best possible
algorithm takes a long time to run. A simple example is the Towers of Hanoi
problem, which requires 2n moves to “solve” a tower with n disks. It is not possible
for any computer program that solves the Towers of Hanoi problem to run in less
than Ω(2n) time, because that many moves must be printed out.

Besides those problems whose solutions must take a long time to run, there
are also many problems for which we simply do not know if there are efficient
algorithms or not. The best algorithms that we know for such problems are very

553



554 Chap. 17 Limits to Computation

slow, but perhaps there are better ones waiting to be discovered. Of course, while
having a problem with high running time is bad, it is even worse to have a problem
that cannot be solved at all! Problems of the later type do exist, and some are
presented in Section 17.3.

This chapter presents a brief introduction to the theory of expensive and im-
possible problems. Section 17.1 presents the concept of a reduction, which is the
central tool used for analyzing the difficulty of a problem (as opposed to analyzing
the cost of an algorithm). Reductions allow us to relate the difficulty of various
problems, which is often much easier than doing the analysis for a problem from
first principles. Section 17.2 discusses “hard” problems, by which we mean prob-
lems that require, or at least appear to require, time exponential on the input size.
Finally, Section 17.3 considers various problems that, while often simple to define
and comprehend, are in fact impossible to solve using a computer program. The
classic example of such a problem is deciding whether an arbitrary computer pro-
gram will go into an infinite loop when processing a specified input. This is known
as the halting problem.

17.1 Reductions

We begin with an important concept for understanding the relationships between
problems, called reduction. Reduction allows us to solve one problem in terms
of another. Equally importantly, when we wish to understand the difficulty of a
problem, reduction allows us to make relative statements about upper and lower
bounds on the cost of a problem (as opposed to an algorithm or program).

Because the concept of a problem is discussed extensively in this chapter, we
want notation to simplify problem descriptions. Throughout this chapter, a problem
will be defined in terms of a mapping between inputs and outputs, and the name of
the problem will be given in all capital letters. Thus, a complete definition of the
sorting problem could appear as follows:

SORTING:
Input: A sequence of integers x0, x1, x2, ..., xn−1.
Output: A permutation y0, y1, y2, ..., yn−1 of the sequence such that yi ≤ yj

whenever i < j.

Once you have bought or written a program to solve one problem, such as
sorting, you might be able to use it as a tool to solve a different problem. This is



Sec. 17.1 Reductions 555

23

42

17

93

88

12

57

90

48

59

11

89

12

91

64

34

Figure 17.1 An illustration of PAIRING. The two lists of numbers are paired up
so that the least values from each list make a pair, the next smallest values from
each list make a pair, and so on.

known in software engineering as software reuse. To illustrate this, let us consider
another problem.

PAIRING:
Input: Two sequences of integers X = (x0, x1, ..., xn−1) and Y =

(y0, y1, ..., yn−1).
Output: A pairing of the elements in the two sequences such that the least

value in X is paired with the least value in Y , the next least value in X is paired
with the next least value in Y , and so on.

Figure 17.1 illustrates PAIRING. One way to solve PAIRING is to use an ex-
isting sorting program by sorting each of the two sequences, and then pairing-off
items based on their position in sorted order. Technically, we say that PAIRING is
reduced to SORTING, because SORTING is used to solve PAIRING.

Notice that reduction is a three-step process. The first step is to convert an
instance of PAIRING into two instances of SORTING. The conversion step is not
very interesting; it simply takes each sequence and assigns it to an array to be
passed to SORTING. The second step is to sort the two arrays (i.e., apply SORTING
to each array). The third step is to convert the output of SORTING to the output for
PAIRING. This is done by pairing the first elements in the sorted arrays, the second
elements, and so on.

The reduction of PAIRING to SORTING helps to establish an upper bound
on the cost of PAIRING. In terms of asymptotic notation, assuming that we can



556 Chap. 17 Limits to Computation

find one method to convert the inputs to PAIRING into inputs to SORTING “fast
enough,” and a second method to convert the result of SORTING back to the correct
result for PAIRING “fast enough,” then the asymptotic cost of PAIRING cannot
be more than the cost of SORTING. In this case, there is little work to be done
to convert from PAIRING to SORTING, or to convert the answer from SORTING
back to the answer for PAIRING, so the dominant cost of this solution is performing
the sort operation. Thus, an upper bound for PAIRING is in O(n log n).

It is important to note that the pairing problem does not require that elements
of the two sequences be sorted. This is merely one possible way to solve the prob-
lem. PAIRING only requires that the elements of the sequences be paired correctly.
Perhaps there is another way to do it? Certainly if we use sorting to solve PAIR-
ING, the algorithms will require Ω(n log n) time. But, another approach might
conceivably be faster.

There is another use of reductions aside from applying an old algorithm to solve
a new problem (and thereby establishing an upper bound for the new problem).
That is to prove a lower bound on the cost of a new problem by showing that it
could be used as a solution for an old problem with a known lower bound.

Assume we can go the other way and convert SORTING to PAIRING “fast
enough.” What does this say about the minimum cost of PAIRING? We know
from Section 7.9 that the cost of SORTING in the worst and average cases is in
Ω(n log n). In other words, the best possible algorithm for sorting requires at least
n log n time.

Assume that PAIRING could be done in O(n) time. Then, one way to create a
sorting algorithm would be to convert SORTING into PAIRING, run the algorithm
for PAIRING, and finally convert the answer back to the answer for SORTING.
Provided that we can convert SORTING to/from PAIRING “fast enough,” this pro-
cess would yield an O(n) algorithm for sorting! Because this contradicts what we
know about the lower bound for SORTING, and the only flaw in the reasoning is
the initial assumption that PAIRING can be done in O(n) time, we can conclude
that there is no O(n) time algorithm for PAIRING. This reduction process tells us
that PAIRING must be at least as expensive as SORTING and so must itself have a
lower bound in Ω(n log n).

To complete this proof regarding the lower bound for PAIRING, we need now
to find a way to reduce SORTING to PAIRING. This is easily done. Take an in-
stance of SORTING (i.e., an array A of n elements). A second array B is generated
that simply stores i in position i for 0 ≤ i < n. Pass the two arrays to PAIRING.
Take the resulting set of pairs, and use the value from the B half of the pair to tell
which position in the sorted array the A half should take; that is, we can now reorder



Sec. 17.1 Reductions 557

the records in the A array using the corresponding value in the B array as the sort
key and running a simple Θ(n) Binsort. The conversion of SORTING to PAIRING
can be done in O(n) time, and likewise the conversion of the output of PAIRING
can be converted to the correct output for SORTING in O(n) time. Thus, the cost
of this “sorting algorithm” is dominated by the cost for PAIRING.

Consider any two problems for which a suitable reduction from one to the other
can be found. The first problem takes an arbitrary instance of its input, which we
will call I, and transforms I to a solution, which we will call SLN. The second prob-
lem takes an arbitrary instance of its input, which we will call I′, and transforms I′

to a solution, which we will call SLN′. We can define reduction more formally as a
three-step process:

1. Transform an arbitrary instance of the first problem to an instance of the
second problem. In other words, there must be a transformation from any
instance I of the first problem to an instance I′ of the second problem.

2. Apply an algorithm for the second problem to the instance I′, yielding a
solution SLN′.

3. Transform SLN′ to the solution of I, known as SLN. Note that SLN must in
fact be the correct solution for I for the reduction to be acceptable.

It is important to note that the reduction process does not give us an algorithm
for solving either problem by itself. It merely gives us a method for solving the first
problem given that we already have a solution to the second. More importantly for
the topics to be discussed in the remainder of this chapter, reduction gives us a way
to understand the bounds of one problem in terms of another. Specifically, given
efficient transformations, the upper bound of the first problem is at most the upper
bound of the second. Conversely, the lower bound of the second problem is at least
the lower bound of the first.

As a second example of reduction, consider the simple problem of multiplying
two n-digit numbers. The standard long-hand method for multiplication is to mul-
tiply the last digit of the first number by the second number (taking Θ(n) time),
multiply the second digit of the first number by the second number (again taking
Θ(n) time), and so on for each of the n digits of the first number. Finally, the in-
termediate results are added together. Note that adding two numbers of length M
andN can easily be done in Θ(M+N) time. Because each digit of the first number
is multiplied against each digit of the second, this algorithm requires Θ(n2) time.
Asymptotically faster (but more complicated) algorithms are known, but none is so
fast as to be in O(n).

Next we ask the question: Is squaring an n-digit number as difficult as multi-
plying two n-digit numbers? We might hope that something about this special case



558 Chap. 17 Limits to Computation

will allow for a faster algorithm than is required by the more general multiplication
problem. However, a simple reduction proof serves to show that squaring is “as
hard” as multiplying.

The key to the reduction is the following formula:

X × Y =
(X + Y )2 − (X − Y )2

4
.

The significance of this formula is that it allows us to convert an arbitrary instance
of multiplication to a series of operations involving three addition/subtractions
(each of which can be done in linear time), two squarings, and a division by 4.
Note that the division by 4 can be done in linear time (simply convert to binary,
shift right by two digits, and convert back).

This reduction shows that if a linear time algorithm for squaring can be found,
it can be used to construct a linear time algorithm for multiplication.

Our next example of reduction concerns the multiplication of two n× n matri-
ces. For this problem, we will assume that the values stored in the matrices are sim-
ple integers and that multiplying two simple integers takes constant time (because
multiplication of two int variables takes a fixed number of machine instructions).
The standard algorithm for multiplying two matrices is to multiply each element
of the first matrix’s first row by the corresponding element of the second matrix’s
first column, then adding the numbers. This takes Θ(n) time. Each of the n2 el-
ements of the solution are computed in similar fashion, requiring a total of Θ(n3)
time. Faster algorithms are known (see the discussion of Strassen’s Algorithm in
Section 16.4.3), but none are so fast as to be in O(n2).

Now, consider the case of multiplying two symmetric matrices. A symmetric
matrix is one in which entry ij is equal to entry ji; that is, the upper-right triangle
of the matrix is a mirror image of the lower-left triangle. Is there something about
this restricted case that allows us to multiply two symmetric matrices faster than
in the general case? The answer is no, as can be seen by the following reduction.
Assume that we have been given two n × n matrices A and B. We can construct a
2n× 2n symmetric matrix from an arbitrary matrix A as follows:[

0 A
AT 0

]
.

Here 0 stands for an n×nmatrix composed of zero values, A is the original matrix,
and AT stands for the transpose of matrix A.1 Note that the resulting matrix is now

1The transpose operation takes position ij of the original matrix and places it in position ji of the
transpose matrix. This can easily be done in n2 time for an n × n matrix.



Sec. 17.2 Hard Problems 559

symmetric. We can convert matrix B to a symmetric matrix in a similar manner.
If symmetric matrices could be multiplied “quickly” (in particular, if they could
be multiplied together in Θ(n2) time), then we could find the result of multiplying
two arbitrary n × n matrices in Θ(n2) time by taking advantage of the following
observation: [

0 A
AT 0

] [
0 BT

B 0

]
=
[

AB 0
0 ATBT

]
.

In the above formula, AB is the result of multiplying matrices A and B together.

17.2 Hard Problems

There are several ways that a problem could be considered hard. For example, we
might have trouble understanding the definition of the problem itself. At the be-
ginning of a large data collection and analysis project, developers and their clients
might have only a hazy notion of what their goals actually are, and need to work
that out over time. For other types of problems, we might have trouble finding or
understanding an algorithm to solve the problem. Understanding spoken Engish
and translating it to written text is an example of a problem whose goals are easy
to define, but whose solution is not easy to discover. But even though a natural
language processing algorithm might be difficult to write, the program’s running
time might be fairly fast. There are many practical systems today that solve aspects
of this problem in reasonable time.

None of these is what is commonly meant when a computer theoretician uses
the word “hard.” Throughout this section, “hard” means that the best-known alg-
orithm for the problem is expensive in its running time. One example of a hard
problem is Towers of Hanoi. It is easy to understand this problem and its solution.
It is also easy to write a program to solve this problem. But, it takes an extremely
long time to run for any “reasonably” large value of n. Try running a program to
solve Towers of Hanoi for only 30 disks!

The Towers of Hanoi problem takes exponential time, that is, its running time
is Θ(2n). This is radically different from an algorithm that takes Θ(n log n) time
or Θ(n2) time. It is even radically different from a problem that takes Θ(n4) time.
These are all examples of polynomial running time, because the exponents for all
terms of these equations are constants. Recall from Chapter 3 that if we buy a new
computer that runs twice as fast, the size of problem with complexity Θ(n4) that
we can solve in a certain amount of time is increased by the fourth root of two.
In other words, there is a multiplicative factor increase, even if it is a rather small
one. This is true for any algorithm whose running time can be represented by a
polynomial.



560 Chap. 17 Limits to Computation

Consider what happens if you buy a computer that is twice as fast and try to
solve a bigger Towers of Hanoi problem in a given amount of time. Because its
complexity is Θ(2n), we can solve a problem only one disk bigger! There is no
multiplicative factor, and this is true for any exponential algorithm: A constant
factor increase in processing power results in only a fixed addition in problem-
solving power.

There are a number of other fundamental differences between polynomial run-
ning times and exponential running times that argues for treating them as quali-
tatively different. Polynomials are closed under composition and addition. Thus,
running polynomial-time programs in sequence, or having one program with poly-
nomial running time call another a polynomial number of times yields polynomial
time. Also, all computers known are polynomially related. That is, any program
that runs in polynomial time on any computer today, when tranferred to any other
computer, will still run in polynomial time.

There is a practical reason for recognizing a distinction. In practice, most poly-
nomial time algorithms are “feasible” in that they can run reasonably large inputs
in reasonable time. In contrast, most algorithms requiring exponential time are
not practical to run even for fairly modest sizes of input. One could argue that
a program with high polynomial degree (such as n100) is not practical, while an
exponential-time program with cost 1.001n is practical. But the reality is that we
know of almost no problems where the best polynomial-time algorithm has high
degree (they nearly all have degree four or less), while almost no exponential-time
algorithms (whose cost is (O(cn)) have their constant c close to one. So there is not
much gray area between polynomial and exponential time algorithms in practice.

For the rest of this chapter, we define a hard algorithm to be one that runs in
exponential time, that is, in Ω(cn) for some constant c > 1. A definition for a hard
problem will be presented in the next section.

17.2.1 The Theory of NP-Completeness

Imagine a magical computer that works by guessing the correct solution from
among all of the possible solutions to a problem. Another way to look at this is
to imagine a super parallel computer that could test all possible solutions simul-
taneously. Certainly this magical (or highly parallel) computer can do anything a
normal computer can do. It might also solve some problems more quickly than a
normal computer can. Consider some problem where, given a guess for a solution,
checking the solution to see if it is correct can be done in polynomial time. Even
if the number of possible solutions is exponential, any given guess can be checked
in polynomial time (equivalently, all possible solutions are checked simultaneously



Sec. 17.2 Hard Problems 561

in polynomial time), and thus the problem can be solved in polynomial time by our
hypothetical magical computer. Another view of this concept is that if you cannot
get the answer to a problem in polynomial time by guessing the right answer and
then checking it, then you cannot do it in polynomial time in any other way.

The idea of “guessing” the right answer to a problem — or checking all possible
solutions in parallel to determine which is correct — is called non-determinism.
An algorithm that works in this manner is called a non-deterministic algorithm,
and any problem with an algorithm that runs on a non-deterministic machine in
polynomial time is given a special name: It is said to be a problem in NP . Thus,
problems in NP are those problems that can be solved in polynomial time on a
non-deterministic machine.

Not all problems requiring exponential time on a regular computer are in NP .
For example, Towers of Hanoi is not inNP , because it must print out O(2n) moves
for n disks. A non-deterministic machine cannot “guess” and print the correct
answer in less time.

On the other hand, consider what is commonly known as the Traveling Sales-
man problem.

TRAVELING SALESMAN (1)
Input: A complete, directed graph G with positive distances assigned to

each edge in the graph.
Output: The shortest simple cycle that includes every vertex.

Figure 17.2 illustrates this problem. Five vertices are shown, with edges and
associated costs between each pair of edges. (For simplicity, we assume that the
cost is the same in both directions, though this need not be the case.) If the salesman
visits the cities in the order ABCDEA, he will travel a total distance of 13. A better
route would be ABDCEA, with cost 11. The best route for this particular graph
would be ABEDCA, with cost 9.

We cannot solve this problem in polynomial time with a guess-and-test non-
deterministic computer. The problem is that, given a candidate cycle, while we can
quickly check that the answer is indeed a cycle of the appropriate form, and while
we can quickly calculate the length of the cycle, we have no easy way of knowing
if it is in fact the shortest such cycle. However, we can solve a variant of this
problem cast in the form of a decision problem. A decision problem is simply one
whose answer is either YES or NO. The decision problem form of TRAVELING
SALESMAN is as follows:



562 Chap. 17 Limits to Computation

A
3

E

2

3 6

8
4

1

B

C

2

1 1
D

Figure 17.2 An illustration of the TRAVELING SALESMAN problem. Five
vertices are shown, with edges between each pair of cities. The problem is to visit
all of the cities exactly once, returning to the start city, with the least total cost.

TRAVELING SALESMAN (2)
Input: A complete, directed graph G with positive distances assigned to

each edge in the graph, and an integer k.
Output: YES if there is a simple cycle with total distance ≤ k containing

every vertex in G, and NO otherwise.

We can solve this version of the problem in polynomial time with a non-deter-
ministic computer. The non-deterministic algorithm simply checks all of the pos-
sible subsets of edges in the graph, in parallel. If any subset of the edges is an
appropriate cycle of total length less than or equal to k, the answer is YES; oth-
erwise the answer is NO. Note that it is only necessary that some subset meet the
requirement; it does not matter how many subsets fail. Checking a particular sub-
set is done in polynomial time by adding the distances of the edges and verifying
that the edges form a cycle that visits each vertex exactly once. Thus, the checking
algorithm runs in polynomial time. Unfortunately, there are 2|E| subsets to check,
so this algorithm cannot be converted to a polynomial time algorithm on a regu-
lar computer. Nor does anybody in the world know of any other polynomial time
algorithm to solve TRAVELING SALESMAN on a regular computer, despite the
fact that the problem has been studied extensively by many computer scientists for
many years.

It turns out that there is a large collection of problems with this property: We
know efficient non-deterministic algorithms, but we do not know if there are effi-
cient deterministic algorithms. At the same time, we have not been able to prove
that any of these problems do not have efficient deterministic algorithms. This class
of problems is called NP-complete. What is truly strange and fascinating about
NP-complete problems is that if anybody ever finds the solution to any one of
them that runs in polynomial time on a regular computer, then by a series of reduc-



Sec. 17.2 Hard Problems 563

tions, every other problem that is in NP can also be solved in polynomial time on
a regular computer!

Define a problem to be NP-hard if any problem in NP can be reduced to X
in polynomial time. Thus, X is as hard as any problem in NP . A problem X is
defined to be NP-complete if

1. X is in NP , and
2. X is NP-hard.

The requirement that a problem be NP-hard might seem to be impossible, but
in fact there are hundreds of such problems, including TRAVELING SALESMAN.
Another such problem is called CLIQUE.

CLIQUE
Input: An arbitrary undirected graph G and an integer k.
Output: YES if there is a complete subgraph of at least k vertices, and NO

otherwise.

Nobody knows whether there is a polynomial time solution for CLIQUE, but if
such an algorithm is found for CLIQUE or for TRAVELING SALESMAN, then
that solution can be modified to solve the other, or any other problem in NP , in
polynomial time.

The primary theoretical advantage of knowing that a problem P1 isNP-comp-
lete is that it can be used to show that another problem P2 isNP-complete. This is
done by finding a polynomial time reduction of P1 to P2. Because we already know
that all problems inNP can be reduced to P1 in polynomial time (by the definition
ofNP-complete), we now know that all problems can be reduced to P2 as well by
the simple algorithm of reducing to P1 and then from there reducing to P2.

There is a practical advantage to knowing that a problem is NP-complete. It
relates to knowing that if a polynomial time solution can be found for any prob-
lem that is NP-complete, then a polynomial solution can be found for all such
problems. The implication is that,

1. Because no one has yet found such a solution, it must be difficult or impos-
sible to do; and

2. Effort to find a polynomial time solution for one NP-complete problem can
be considered to have been expended for all NP-complete problems.

How is NP-completeness of practical significance for typical programmers?
Well, if your boss demands that you provide a fast algorithm to solve a problem,
she will not be happy if you come back saying that the best you could do was



564 Chap. 17 Limits to Computation

NP-complete problems

TRAVELING SALESMAN

P problems

SORTING

TOH
Exponential time problems

NP problems

Figure 17.3 Our knowledge regarding the world of problems requiring expo-
nential time or less. Some of these problems are solvable in polynomial time by a
non-deterministic computer. Of these, some are known to be NP-complete, and
some are known to be solvable in polynomial time on a regular computer.

an exponential time algorithm. But, if you can prove that the problem is NP-
complete, while she still won’t be happy, at least she should not be mad at you! By
showing that her problem is NP-complete, you are in effect saying that the most
brilliant computer scientists for the last 50 years have been trying and failing to find
a polynomial time algorithm for her problem.

Problems that are solvable in polynomial time on a regular computer are said
to be in class P . Clearly, all problems in P are solvable in polynomial time on
a non-deterministic computer simply by neglecting to use the non-deterministic
capability. Some problems inNP areNP-complete. We can consider all problems
solvable in exponential time or better as an even bigger class of problems because
all problems solvable in polynomial time are solvable in exponential time. Thus, we
can view the world of exponential-time-or-better problems in terms of Figure 17.3.

The most important unanswered question in theoretical computer science is
whether P = NP . If they are equal, then there is a polynomial time algorithm
for TRAVELING SALESMAN and all related problems. Because TRAVELING
SALESMAN is known to beNP-complete, if a polynomial time algorithm were to
be found for this problem, then all problems inNP would also be solvable in poly-
nomial time. Conversely, if we were able to prove that TRAVELING SALESMAN
has an exponential time lower bound, then we would know that P 6= NP .



Sec. 17.2 Hard Problems 565

17.2.2 NP-Completeness Proofs

To start the process of being able to prove problems are NP-complete, we need to
prove just one problem H is NP-complete. After that, to show that any problem
X is NP-hard, we just need to reduce H to X . When doing NP-completeness
proofs, it is very important not to get this reduction backwards! If we reduce can-
didate problem X to known hard problem H , this means that we use H as a step to
solving X . All that means is that we have found a (known) hard way to solve X .
However, when we reduce known hard problem H to candidate problem X , that
means we are using X as a step to solve H . And if we know that H is hard, that
means X must also be hard.

So a crucial first step to getting this whole theory off the ground is finding one
problem that is NP-hard. The first proof that a problem is NP-hard (and because
it is in NP , therefore NP-complete) was done by Stephen Cook. For this feat,
Cook won the first Turing award, which is the closest Computer Science equivalent
to the Nobel Prize. The “grand-daddy” NP-complete problem that Cook used is
call SATISFIABILITY (or SAT for short).

A Boolean expression includes Boolean variables combined using the opera-
tors AND (·), OR (+), and NOT (to negate Boolean variable x we write x). A
literal is a Boolean variable or its negation. A clause is one or more literals OR’ed
together. Let E be a Boolean expression over variables x1, x2, ..., xn. Then we
define Conjunctive Normal Form (CNF) to be a boolean expression written as a
series of clauses that are AND’ed together. For example,

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6)

is in CNF, and has three clauses. Now we can define the problem SAT.

SATISFIABILITY (SAT)
Input: A Boolean expressionE over variables x1, x2, ... in Conjunctive Nor-

mal Form.
Output: YES if there is an assignment to the variables that makes E true,

NO otherwise.

Cook proved that SAT is NP-hard. Explaining this proof is beyond the scope
of this book. But we can briefly summarize it as follows. Any decision problem F
can be recast as some language acceptance problem L:

F (I) = YES⇔ L(I ′) = ACCEPT.



566 Chap. 17 Limits to Computation

That is, if a decision problem F yields YES on input I, then there is a language L
containing string I′ where I′ is some suitable transformation of input I. Conversely,
if F would give answer NO for input I, then I’s transformed version I′ is not in the
language L.

Turing machines are a simple model of computation for writing programs that
are language acceptors. There is a “universal” Turing machine that can take as in-
put a description for a Turing machine, and an input string, and return the execution
of that machine on that string. This Turing machine in turn can be cast as a boolean
expression such that the expression is satisfiable if and only if the Turing machine
yields ACCEPT for that string. Cook used Turing machines in his proof because
they are simple enough that he could develop this transformation of Turing ma-
chines to Boolean expressions, but rich enough to be able to compute any function
that a regular computer can compute. The significance of this transformation is that
any decision problem that is performable by the Turing machine is transformable
to SAT. Thus, SAT is NP-hard.

As explained above, to show that a decision problem X is NP-complete, we
prove that X is in NP (normally easy, and normally done by giving a suitable
polynomial-time, nondeterministic algorithm) and then prove that X is NP-hard.
To prove that X is NP-hard, we choose a known NP-complete problem, say A.
We describe a polynomial-time transformation that takes an arbitrary instance I of
A to an instance I′ of X . We then describe a polynomial-time transformation from
S′ to S such that S is the solution for I. The following example provides a model
for how an NP-completeness proof is done.

3-SATISFIABILITY (3 SAT)
Input: A Boolean expression E in CNF such that each clause contains ex-

actly 3 literals.
Output: YES if the expression can be satisfied, NO otherwise.

Example 17.1 3 SAT is a special case of SAT. Is 3 SAT easier than SAT?
Not if we can prove it to be NP-complete.
Theorem 17.1 3 SAT is NP-complete.
Proof: Prove that 3 SAT is in NP: Guess (nondeterministically) truth
values for the variables. The correctness of the guess can be verified in
polynomial time.

Prove that 3 SAT is NP-hard: We need a polynomial-time reduction
from SAT to 3 SAT. Let E = C1 · C2 · ... · Ck be any instance of SAT. Our
strategy is to replace any clause Ci that does not have exactly three literals



Sec. 17.2 Hard Problems 567

with a set of clauses each having exactly three literals. (Recall that a literal
can be a variable such as x, or the negation of a variable such as x.) Let
Ci = x1 + x2 + ...+ xj where x1, ..., xj are literals.

1. j = 1, so Ci = x1. Replace Ci with C ′i:

(x1 + y + z) · (x1 + y + z) · (x1 + y + z) · (x1 + y + z)

where y and z are variables not appearing in E. Clearly, C ′i is satisfi-
able if and only if (x1) is satisfiable, meaning that x1 is true.

2. J = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable not appearing in E. This new pair of clauses
is satisfiable if and only if (x1 + x2) is satisfiable, that is, either x1 or
x2 must be true.

3. j > 3. Replace Ci = (x1 + x2 + · · ·+ xj) with

(x1 + x2 + z1) · (x3 + z1 + z2) · (x4 + z2 + z3) · ...

·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.

After appropriate replacements have been made for each Ci, a Boolean
expression results that is an instance of 3 SAT. Each replacement is satisfi-
able if and only if the original clause is satisfiable. The reduction is clearly
polynomial time.

For the first two cases it is fairly easy to see that the original clause
is satisfiable if and only if the resulting clauses are satisfiable. For the
case were we replaced a clause with more than three literals, consider the
following.

1. If E is satisfiable, then E′ is satisfiable: Assume xm is assigned
true. Then assign zt, t ≤ m − 2 as true and zk, t ≥ m − 1 as
false. Then all clauses in Case (3) are satisfied.

2. If x1, x2, ..., xj are all false, then z1, z2, ..., zj−3 are all true. But
then (xj−1 + xj−2 + zj−3) is false.

2



568 Chap. 17 Limits to Computation

Next we define the problem VERTEX COVER for use in further examples.

VERTEX COVER:
Input: A graph G and an integer k.
Output: YES if there is a subset S of the vertices in G of size k or less such

that every edge of G has at least one of its endpoints in S, and NO otherwise.

Example 17.2 In this example, we make use of a simple conversion be-
tween two graph problems.
Theorem 17.2 VERTEX COVER is NP-complete.
Proof: Prove that VERTEX COVER is in NP: Simply guess a subset
of the graph and determine in polynomial time whether that subset is in fact
a vertex cover of size k or less.

Prove that VERTEX COVER is NP-hard: We will assume that
CLIQUE is already known to be NP-complete. (We will see this proof
in the next example. For now, just accept that it is true.)

Given that CLIQUE is NP-complete, we need to find a polynomial-
time transformation from the input to CLIQUE to the input to VERTEX
COVER, and another polynomial-time transformation from the output for
VERTEX COVER to the output for CLIQUE. This turns out to be a simple
matter, given the following observation. Consider a graph G and a vertex
cover S on G. Denote by S′ the set of vertices in G but not in S. There
can be no edge connecting any two vertices in S′ because, if there were,
then S would not be a vertex cover. Denote by G′ the inverse graph for G,
that is, the graph formed from the edges not in G. If S is of size k, then S′

forms a clique of size n − k in graph G′. Thus, we can reduce CLIQUE
to VERTEX COVER simply by converting graph G to G′, and asking if G′

has a VERTEX COVER of size n − k or smaller. If YES, then there is a
clique in G of size k; if NO then there is not. 2

Example 17.3 So far, our NP-completenss proofs have involved trans-
formations between inputs of the same “type,” such as from a Boolean ex-
pression to a Boolean expression or from a graph to a graph. Sometimes an
NP-completeness proof involves a transformation between types of inputs,
as shown next.
Theorem 17.3 CLIQUE is NP-complete.



Sec. 17.2 Hard Problems 569

Proof: CLIQUE is in NP , because we can just guess a collection of k
vertices and test in polynomial time if it is a clique. Now we show that
CLIQUE is NP-hard by using a reduction from SAT. An instance of SAT
is a Boolean expression

B = C1 · C2 · ... · Cm

whose clauses we will describe by the notation

Ci = y[i, 1] + y[i, 2] + ...+ y[i, ki]

where ki is the number of literals in Clause ci. We will transform this to an
instance of CLIQUE as follows. We build a graph

G = {v[i, j]|1 ≤ i ≤ m, 1 ≤ j ≤ ki},

that is, there is a vertex in G corresponding to every literal in Boolean
expression B. We will draw an edge between each pair of vertices v[i1, j1]
and v[i2, j2] unless (1) they are two literals within the same clause (i1 = i2)
or (2) they are opposite values for the same variable (i.e., one is negated
and the other is not). Set k = m. Figure 17.4 shows an example of this
transformation.

B is satisfiable if and only if G has a clique of size k or greater. B being
satisfiable implies that there is a truth assignment such that at least one
literal y[i, ji] is true for each i. If so, then these m literals must correspond
to m vertices in a clique of size k = m. Conversely, if G has a clique of
size k or greater, then the clique must have size exactly k (because no two
vertices corresponding to literals in the same clause can be in the clique)
and there is one vertex v[i, ji] in the clique for each i. There is a truth
assignment making each y[i, ji] true. That truth assignment satisfies B.

We conclude that CLIQUE is NP-hard, therefore NP-complete. 2

17.2.3 Coping with NP-Complete Problems

Finding that your problem isNP-complete might not mean that you can just forget
about it. Traveling salesmen need to find reasonable sales routes regardless of the
complexity of the problem. What do you do when faced with an NP-complete
problem that you must solve?



570 Chap. 17 Limits to Computation

x2

x1

x1

x3

C1 C2 C3

x3

x1

x2

Figure 17.4 The graph generated from boolean expressionB = (x1+x2)·(x1+
x2 +x3) · (x1 +x3). Literals from the first clause are labeled C1, and literals from
the second clause are labeled C2. There is an edge between every two pairs of
vertices except when both vertices represent instances of literals from the same
clause, or a negation of the same variable. Thus, the vertex labeled C1 : y1 does
not connect to the vertex labeled C1 : y2 (because they are literals in the same
clause) or the vertex labeled C2 : y1 (because they are opposite values for the
same variable).

There are several techniques to try. One approach is to run only small instances
of the problem. For some problems, this is not acceptable. For example, TRAVEL-
ING SALESMAN grows so quickly that it cannot be run on modern computers for
problem sizes much over 20 cities, which is not an unreasonable problem size for
real-life situations. However, some other problems in NP , while requiring expo-
nential time, still grow slowly enough that they allow solutions for problems of a
useful size.

Consider the Knapsack problem from Section 16.2.1. We have a dynamic pro-
gramming algorithm whose cost is Θ(nK) for n objects being fit into a knapsack of
size K. But it turns out that Knapsack is NP-complete. Isn’t this a contradiction?
Not when we consider the relationship between n andK. How big isK? Input size
is typically O(n lgK) because the item sizes are smaller than K. Thus, Θ(nK) is
exponential on input size.

This dynamic programming algorithm is tractable if the numbers are “reason-
able.” That is, we can successfully find solutions to the problem when nK is in
the thousands. Such an algorithm is called a pseudo-polynomial time algorithm.
This is different from TRAVELING SALESMAN which cannot possibly be solved
when n = 100 given current algorithms.

A second approach to handling NP-complete problems is to solve a special
instance of the problem that is not so hard. For example, many problems on graphs



Sec. 17.2 Hard Problems 571

areNP-complete, but the same problem on certain restricted types of graphs is not
as difficult. For example, while the VERTEX COVER and CLIQUE problems are
NP-complete in general, there are polynomial time solutions for bipartite graphs
(i.e., graphs whose vertices can be separated into two subsets such that no pair of
vertices within one of the subsets has an edge between them). 2-SATISFIABILITY
(where every clause in a Boolean expression has at most two literals) has a poly-
nomial time solution. Several geometric problems requre only polynomial time in
two dimensions, but are NP-complete in three dimensions or more. KNAPSACK
is considered to run in polynomial time if the numbers (and K) are “small.” Small
here means that they are polynomial on n, the number of items.

In general, if we want to guarentee that we get the correct answer for an NP-
complete problem, we potentially need to examine all of the (exponential number
of) possible solutions. However, with some organization, we might be able to either
examine them quickly, or avoid examining a great many of the possible answers
in some cases. For example, Dynamic Programming (Section 16.2) attempts to
organize the processing of all the subproblems to a problem so that the work is
done efficiently.

If we need to do a brute-force search of the entire solution space, we can use
backtracking to visit all of the possible solutions organized in a solution tree. For
example, SATISFIABILITY has 2n possible ways to assign truth values to the n
variables contained in the boolean expression being satisfied. We can view this as
a tree of solutions by considering that we have a choice of making the first variable
true or false. Thus, we can put all solutions where the first variable is true on
one side of the tree, and the remaining solutions on the other. We then examine the
solutions by moving down one branch of the tree, until we reach a point where we
know the solution cannot be correct (such as if the current partial collection of as-
signments yields an unsatisfiable expression). At this point we backtrack and move
back up a node in the tree, and then follow down the alternate branch. If this fails,
we know to back up further in the tree as necessary and follow alternate branches,
until finally we either find a solution that satisfies the expression or exhaust the
tree. In some cases we avoid processing many potential solutions, or find a solution
quickly. In others, we end up visiting a large portion of the 2n possible solutions.

Banch-and-Bounds is an extension of backtracking that applies to optimiza-
tion problems such as TRAVELING SALESMAN where we are trying to find the
shortest tour through the cities. We traverse the solution tree as with backtrack-
ing. However, we remember the best value found so far. Proceeding down a given
branch is equivalent to deciding which order to visit cities. So any node in the so-
lution tree represents some collection of cities visited so far. If the sum of these



572 Chap. 17 Limits to Computation

distances exceeds the best tour found so far, then we know to stop pursuing this
branch of the tree. At this point we can immediately back up and take another
branch. If we have a quick method for finding a good (but not necessarily) best
solution, we can use this as an initial bound value to effectively prune portions of
the tree.

A third approach is to find an approximate solution to the problem. There are
many approaches to finding approximate solutions. One way is to use a heuristic
to solve the problem, that is, an algorithm based on a “rule of thumb” that does not
always give the best answer. For example, the TRAVELING SALESMAN problem
can be solved approximately by using the heuristic that we start at an arbitrary city
and then always proceed to the next unvisited city that is closest. This rarely gives
the shortest path, but the solution might be good enough. There are many other
heuristics for TRAVELING SALESMAN that do a better job.

Some approximation algorithms have guaranteed performance, such that the
answer will be within a certain percentage of the best possible answer. For exam-
ple, consider this simple heuristic for the VERTEX COVER problem: Let M be
a maximal (not necessarily maximum) matching in G. A matching pairs vertices
(with connecting edges) so that no vertex is paired with more than one partner.
Maximal means to pick as many pairs as possible, selecting them in some order un-
til there are no more available pairs to select. Maximum means the matching that
gives the most pairs possible for a given graph. If OPT is the size of a minimum
vertex cover, then |M | ≤ 2 · OPT because at least one endpoint of every matched
edge must be in any vertex cover.

A better example of a guarenteed bound on a solution comes from simple
heuristics to solve the BIN PACKING problem.

BIN PACKING:
Input: Numbers x1, x2, ..., xn between 0 and 1, and an unlimited supply of

bins of size 1 (no bin can hold numbers whose sum exceeds 1).
Output: An assignment of numbers to bins that requires the fewest possible

bins.

BIN PACKING (in its decision tree form) is known to be NP-complete. One
simple heuristic for solving this problem is to use a “first fit” approach. We put the
first number in the first bin. We then put the second number in the first bin if it fits,
otherwise we put it in the second bin. For each subsequent number, we simply go
through the bins in the order we generated them and place the number in the first bin
that fits. The number of bins used is no more than twice the sum of the numbers,



Sec. 17.3 Impossible Problems 573

because every bin (except perhaps one) must be at least half full. However, this
“first fit” heuristic can give us a result that is much worse than optimal. Consider
the following collection of numbers: 6 of 1/7 + ε, 6 of 1/3 + ε, and 6 of 1/2 + ε,
where ε is a small, positive number. Properly organized, this requires 6 bins. But if
done wrongly, we might end up putting the numbers into 10 bins.

A better heuristic is to use decreasing first fit. This is the same as first fit, except
that we keep the bins sorted from most full to least full. Then when deciding where
to put the next item, we place it in the fullest bin that can hold it. This is similar to
the “best fit” heuristic for memory management discussed in Section 12.3. The sig-
nificant thing about this heuristic is not just that it tends to give better performance
than simple first fit. This decreasing first fit heurstic can be proven to require no
more than 11/9 the optimal number of bins. Thus, we have a guarentee on how
much inefficiency can result when using the heuristic.

The theory ofNP-completeness gives a technique for separating tractable from
(probably) untractable problems. Recalling the algorithm for generating algorithms
in Section 15.1, we can refine it for problems that we suspect are NP-complete.
When faced with a new problem, we might alternate between checking if it is
tractable (that is, we try to find a polynomial-time solution) and checking if it is
intractable (we try to prove the problem is NP-complete). While proving that
some problem is NP-complete does not actually make our upper bound for our
algorithm match the lower bound for the problem with certainty, it is nearly as
good. Once we realize that a problem isNP-complete, then we know that our next
step must either be to redefine the problem to make it easier, or else use one of the
“coping” strategies discussed in this section.

17.3 Impossible Problems

Even the best programmer sometimes writes a program that goes into an infinite
loop. Of course, when you run a program that has not stopped, you do not know
for sure if it is just a slow program or a program in an infinite loop. After “enough
time,” you shut it down. Wouldn’t it be great if your compiler could look at your
program and tell you before you run it that it might get into an infinite loop? Al-
ternatively, given a program and a particular input, it would be useful to know if
executing the program on that input will result in an infinite loop without actually
running the program.

Unfortunately, the Halting Problem, as this is called, cannot be solved. There
will never be a computer program that can positively determine, for an arbitrary
program P, if P will halt for all input. Nor will there even be a computer program
that can positively determine if arbitrary program P will halt for a specified input I.



574 Chap. 17 Limits to Computation

How can this be? Programmers look at programs regularly to determine if they will
halt. Surely this can be automated. As a warning to those who believe any program
can be analyzed in this way, carefully examine the following code fragment before
reading on.

while (n > 1)
if (ODD(n))

n = 3 * n + 1;
else

n = n / 2;

This is a famous piece of code. The sequence of values that is assigned to n
by this code is sometimes called the Collatz sequence for input value n. Does
this code fragment halt for all values of n? Nobody knows the answer. Every
input that has been tried halts. But does it always halt? Note that for this code
fragment, because we do not know if it halts, we also do not know an upper bound
for its running time. As for the lower bound, we can easily show Ω(log n)(see
Exercise 3.14).

Personally, I have faith that someday some smart person will completely ana-
lyze the Collitz function and prove once and for all that the code fragment halts for
all values of n. Doing so may well give us techniques that advance our ability to
do algorithm analysis in general. Unfortunately, proofs from computability — the
branch of computer science that studies what is impossible to do with a computer
— compel us to believe that there will always be another bit of program code that
we cannot analyze. This comes as a result of the fact that the Halting Problem is
unsolvable.

17.3.1 Uncountability

Before proving that the Halting Problem is unsolvable, we first prove that not all
functions can be implemented as a computer program. This is so because the num-
ber of programs is much smaller than the number of possible functions.

A set is said to be countable (or countably infinite if it is a set with infinite
members) if every member of the set can be uniquely assigned to a positive integer.
A set is said to be uncountable (or uncountably infinite) if it is not possible to
assign every member of the set to a positive integer.

To understand what is meant when we say “assigned to a positive integer,”
imagine that there is an infinite row of bins, labeled 1, 2, 3, and so on. Take a set
and start placing members of the set into bins, with at most one member per bin.
If we can find a way to assign all of the members to bins, then the set is countable.
For example, consider the set of positive even integers 2, 4, and so on. We can



Sec. 17.3 Impossible Problems 575

assign an integer i to bin i/2 (or, if we don’t mind skipping some bins, then we can
assign even number i to bin i). Thus, the set of even integers is countable. This
should be no surprise, because intuitively there are “fewer” positive even integers
than there are positive integers, even though both are infinite sets. But there are not
really any more positive integers than there are positive even integers, because we
can uniquely assign every positive integer to some positive even integer by simply
assigning positive integer i to positive even integer 2i.

On the other hand, the set of all integers is also countable, even though this set
appears to be “bigger” than the set of positive integers. This is true because we can
assign 0 to positive integer 1, 1 to positive integer 2, -1 to positive integer 3, 2 to
positive integer 4, -2 to positive integer 5, and so on. In general, assign positive
integer value i to positive integer value 2i, and assign negative integer value −i to
positive integer value 2i + 1. We will never run out of positive integers to assign,
and we know exactly which positive integer every integer is assigned to. Because
every integer gets an assignment, the set of integers is countably infinite.

Are the number of programs countable or uncountable? A program can be
viewed as simply a string of characters (including special punctuation, spaces, and
line breaks). Let us assume that the number of different characters that can appear
in a program is P . (Using the ASCII character set, P must be less than 128, but
the actual number does not matter). If the number of strings is countable, then
surely the number of programs is also countable. We can assign strings to the
bins as follows. Assign the null string to the first bin. Now, take all strings of
one character, and assign them to the next P bins in “alphabetic” or ASCII code
order. Next, take all strings of two characters, and assign them to the next P 2 bins,
again in ASCII code order working from left to right. Strings of three characters
are likewise assigned to bins, then strings of length four, and so on. In this way, a
string of any given length can be assigned to some bin.

By this process, any string of finite length is assigned to some bin. So any pro-
gram, which is merely a string of finite length, is assigned to some bin. Because all
programs are assigned to some bin, the set of all programs is countable. Naturally
most of the strings in the bins are not legal programs, but this is irrelevant. All that
matters is that the strings that do correspond to programs are also in the bins.

Now we consider the number of possible functions. To keep things simple,
assume that all functions take a single positive integer as input and yield a sin-
gle positive integer as output. We will call such functions integer functions. A
function is simply a mapping from input values to output values. Of course, not
all computer programs literally take integers as input and yield integers as output.
However, everything that computers read and write is essentially a series of num-



576 Chap. 17 Limits to Computation

1
2
3
4
5
6

1
2
3
4
5
6

1
1
1
1
1
1 6

5
4
3
2
1

1 2 3 4 5

7
9
11
13
15
17

15
1
7

13
2
7

f2(x) f4(x)x x

6
5
4
3
2
1 1

2
3
4
5
6

xf3(x)f1(x) x

Figure 17.5 An illustration of assigning functions to bins.

bers, which may be interpreted as letters or something else. Any useful computer
program’s input and output can be coded as integer values, so our simple model
of computer input and output is sufficiently general to cover all possible computer
programs.

We now wish to see if it is possible to assign all of the integer functions to the
infinite set of bins. If so, then the number of functions is countable, and it might
then be possible to assign every integer function to a program. If the set of integer
functions cannot be assigned to bins, then there will be integer functions that must
have no corresponding program.

Imagine each integer function as a table with two columns and an infinite num-
ber of rows. The first column lists the positive integers starting at 1. The second
column lists the output of the function when given the value in the first column
as input. Thus, the table explicitly describes the mapping from input to output for
each function. Call this a function table.

Next we will try to assign function tables to bins. To do so we must order the
functions, but it does not matter what order we choose. For example, Bin 1 could
store the function that always returns 1 regardless of the input value. Bin 2 could
store the function that returns its input. Bin 3 could store the function that doubles
its input and adds 5. Bin 4 could store a function for which we can see no simple
relationship between input and output.2 These four functions as assigned to the first
four bins are shown in Figure 17.5.

Can we assign every function to a bin? The answer is no, because there is
always a way to create a new function that is not in any of the bins. Suppose that

2There is no requirement for a function to have any discernible relationship between input and
output. A function is simply a mapping of inputs to outputs, with no constraint on how the mapping
is determined.



Sec. 17.3 Impossible Problems 577

1 2 3 4 5

2
3
12
14

2
3
4
5
6

1
1
1
1
1

1 1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

7
9
11
13
15
17

15
1
7
13
2
7

fnew(x)x f1(x) f2(x) f4(x)x x f3(x)
1 1

2
3
4
5
6

xx
1
2
3
4
5
6

Figure 17.6 Illustration for the argument that the number of integer functions is
uncountable.

somebody presents a way of assigning functions to bins that they claim includes
all of the functions. We can build a new function that has not been assigned to
any bin, as follows. Take the output value for input 1 from the function in the first
bin. Call this value F1(1). Add 1 to it, and assign the result as the output of a new
function for input value 1. Regardless of the remaining values assigned to our new
function, it must be different from the first function in the table, because the two
give different outputs for input 1. Now take the output value for 2 from the second
function in the table (known as F2(2)). Add 1 to this value and assign it as the
output for 2 in our new function. Thus, our new function must be different from
the function of Bin 2, because they will differ at least at the second value. Continue
in this manner, assigning Fnew(i) = Fi(i) + 1 for all values i. Thus, the new
function must be different from any function Fi at least at position i. This procedure
for constructing a new function not already in the table is called diagonalization.
Because the new function is different from every other function, it must not be in
the table. This is true no matter how we try to assign functions to bins, and so the
number of integer functions is uncountable. The significance of this is that not all
functions can possibly be assigned to programs, so there must be functions with no
corresponding program. Figure 17.6 illustrates this argument.

17.3.2 The Halting Problem Is Unsolvable

While there might be intellectual appeal to knowing that there exists some function
that cannot be computed by a computer program, does this mean that there is any
such useful function? After all, does it really matter if no program can compute a
“nonsense” function such as shown in Bin 4 of Figure 17.5? Now we will prove



578 Chap. 17 Limits to Computation

that the Halting Problem cannot be computed by any computer program. The proof
is by contradiction.

We begin by assuming that there is a function named halt that can solve the
Halting Problem. Obviously, it is not possible to write out something that does not
exist, but here is a plausible sketch of what a function to solve the Halting Problem
might look like if it did exist. Function halt takes two inputs: a string representing
the source code for a program or function, and another string representing the input
that we wish to determine if the input program or function halts on. Function
halt does some work to make a decision (which is encasulated into some fictitious
function named PROGRAM HALTS). Function halt then returns true if the input
program or function does halt on the given input, and false otherwise.

bool halt(String prog, String input) {
if (PROGRAM HALTS(prog, input))

return true;
else

return false;
}

We now will examine two simple functions that clearly can exist because the
complete source code for them is presented here:

// Return true if "prog" halts when given itself as input
bool selfhalt(String prog) {

if (halt(prog, prog))
return true;

else
return false;

}

// Return the reverse of what selfhalt returns on "prog"
void contrary(String prog) {

if (selfhalt(prog))
while (true); // Go into an infinite loop

}

What happens if we make a program whose sole purpose is to execute the func-
tion contrary and run that program with itself as input? One possibility is that
the call to selfhalt returns true; that is, selfhalt claims that contrary
will halt when run on itself. In that case, contrary goes into an infinite loop (and
thus does not halt). On the other hand, if selfhalt returns false, then halt is
proclaiming that contrary does not halt on itself, and contrary then returns,
that is, it halts. Thus, contrary does the contrary of what halt says that it will
do.



Sec. 17.3 Impossible Problems 579

The action of contrary is logically inconsistent with the assumption that
halt solves the Halting Problem correctly. There are no other assumptions we
made that might cause this inconsistency. Thus, by contradiction, we have proved
that halt cannot solve the Halting Problem correctly, and thus there is no program
that can solve the Halting Problem.

Now that we have proved that the Halting Problem is unsolvable, we can use
reduction arguments to prove that other problems are also unsolvable. The strat-
egy is to assume the existence of a computer program that solves the problem in
question and use that program to solve another problem that is already known to be
unsolvable.

Example 17.4 Consider the following variation on the Halting Problem.
Given a computer program, will it halt when its input is the empty string
(i.e., will it halt when it is given no input)? To prove that this problem is
unsolvable, we will employ a standard technique for computability proofs:
Use a computer program to modify another computer program.
Proof: Assume that there is a function Ehalt that determines whether
a given program halts when given no input. Recall that our proof for the
Halting Problem involved functions that took as parameters a string rep-
resenting a program and another string representing an input. Consider
another function combine that takes a program P and an input string I as
parameters. Function combine modifies P to store I as a static variable S
and further modifies all calls to input functions within P to instead get their
input from S. Call the resulting program P ′. It should take no stretch of the
imagination to believe that any decent compiler could be modified to take
computer programs and input strings and produce a new computer program
that has been modified in this way. Now, take P ′ and feed it to Ehalt. If
Ehalt says that P ′ will halt, then we know that P would halt on input I.
In other words, we now have a procedure for solving the original Halting
Problem. The only assumption that we made was the existence of Ehalt.
Thus, the problem of determining if a program will halt on no input must
be unsolvable. 2

Example 17.5 For arbitrary program P, does there exist any input for
which P halts?
Proof: This problem is also uncomputable. Assume that we had a function
Ahalt that, when given program P as input would determine if there is



580 Chap. 17 Limits to Computation

some input for which P halts. We could modify our compiler (or write
a function as part of a program) to take P and some input string w, and
modify it so that w is hardcoded inside P, with P reading no input. Call this
modified program P ′. Now, P ′ always behaves the same way regardless of
its input, because it ignores all input. However, because w is now hardwired
inside of P ′, the behavior we get is that of P when given w as input. So, P ′

will halt on any arbitrary input if and only if P would halt on input w. We
now feed P ′ to function Ahalt. If Ahalt could determine that P ′ halts
on some input, then that is the same as determining that P halts on input w.
But we know that that is impossible. Therefore, Ahalt cannot exist. 2

There are many things that we would like to have a computer do that are un-
solvable. Many of these have to do with program behavior. For example, proving
that an arbitrary program is “correct,” that is, proving that a program computes a
particular function, is a proof regarding program behavior. As such, what can be
accomplished is severely limited. Some other unsolvable problems include:

• Does a program halt on every input?

• Does a program compute a particular function?

• Do two programs compute the same function?

• Does a particular line in a program get executed?

This does not mean that a computer program cannot be written that works on
special cases, possibly even on most programs that we would be interested in check-
ing. For example, some C compilers will check if the control expression for a
while loop is a constant expression that evaluates to false. If it is, the compiler
will issue a warning that the while loop code will never be executed. However, it
is not possible to write a computer program that can check for all input programs
whether a specified line of code will be executed when the program is given some
specified input.

Another unsolvable problem is whether a program contains a computer virus.
The property “contains a computer virus” is a matter of behavior. Thus, it is not
possible to determine positively whether an arbitrary program contains a computer
virus. Fortunately, there are many good heuristics for determining if a program
is likely to contain a virus, and it is usually possible to determine if a program
contains a particular virus, at least for the ones that are now known. Real virus
checkers do a pretty good job, but, it will always be possible for malicious people
to invent new viruses that no existing virus checker can recognize.



Sec. 17.4 Further Reading 581

17.4 Further Reading

The classic text on the theory of NP-completeness is Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness by Garey and Johnston [GJ79].
The Traveling Salesman Problem, edited by Lawler et al. [LLKS85], discusses
many approaches to finding an acceptable solution to this particular NP-complete
problem in a reasonable amount of time.

For more information about the Collatz function see “On the Ups and Downs
of Hailstone Numbers” by B. Hayes [Hay84], and “The 3x + 1 Problem and its
Generalizations” by J.C. Lagarias [Lag85].

For an introduction to the field of computability and impossible problems, see
Discrete Structures, Logic, and Computability by James L. Hein [Hei03].

17.5 Exercises

17.1 Consider this algorithm for finding the maximum element in an array: First
sort the array and then select the last (maximum) element. What (if anything)
does this reduction tell us about the upper and lower bounds to the problem
of finding the maximum element in a sequence? Why can we not reduce
SORTING to finding the maximum element?

17.2 Use a reduction to prove that squaring an n × n matrix is just as expensive
(asymptotically) as multiplying two n× n matrices.

17.3 Use a reduction to prove that multiplying two upper triangular n × n matri-
ces is just as expensive (asymptotically) as multiplying two arbitrary n × n
matrices.

17.4 (a) Explain why computing the factorial of n by multiplying all values
from 1 to n together is an exponential time algorithm.

(b) Explain why computing an approximation to the factorial of n by mak-
ing use of Stirling’s formula (see Section 2.2) is a polynomial time
algorithm.

17.5 Consider this algorithm for solving the CLIQUE problem. First, generate all
subsets of the vertices containing exactly k vertices. There are O(nk) such
subsets altogether. Then, check whether any subgraphcs induced by these
subsets is complete. If this algorithm ran in polynomial time, what would
be its significance? Why is this not a polynomial-time algorithm for the
CLIQUE problem?

17.6 Write the 3 SAT expression obtained from the reduction of SAT to 3 SAT
described in Section 17.2.1 for the expression

(a+ b+ c+ d) · (d) · (b+ c) · (a+ b) · (a+ c) · (b).



582 Chap. 17 Limits to Computation

Is this expression satisfiable?
17.7 Draw the graph obtained by the reduction of SAT to the CLIQUE problem

given in Section 17.2.1 for the expression

(a+ b+ c) · (a+ b+ c) · (a+ b+ c) · (a+ b+ c).

Is this expression satisfiable?
17.8 A Hamiltonian cycle in graph G is a cycle that visits every vertex in the

graph exactly once before returning to the start vertex. The problem HAMIL-
TONIAN CYCLE asks whether graph G does in fact contain a Hamiltonian
cycle. Assuming that HAMILTONIAN CYCLE isNP-complete, prove that
the decision-problem form of TRAVELING SALESMAN is NP-complete.

17.9 Assuming that VERTEX COVER is NP-complete, prove that CLIQUE is
also NP-complete by finding a polynomial time reduction from VERTEX
COVER to CLIQUE.

17.10 We define the problem INDEPENDENT SET as follows.

INDEPENDENT SET
Input: A graph G and an integer k.
Output: YES if there is a subset S of the vertices in G of size k or

greater such that no edge connects any two vertices in S, and NO other-
wise.

Assuming that CLIQUE is NP-complete, prove that INDEPENDENT SET
is NP-complete.

17.11 Define the problem PARTITION as follows:

PARTITION
Input: A collection of integers.
Output: YES if the collection can be split into two such that the sum

of the integers in each partition sums to the same amount. NO otherwise.

(a) Assuming that PARTITION is NP-complete, prove that BIN PACK-
ING is NP-complete.

(b) Assuming that PARTITION is NP-complete, prove that KNAPSACK
is NP-complete.



Sec. 17.5 Exercises 583

17.12 Imagine that you have a problem P that you know is NP-complete. For
this problem you have two algorithms to solve it. For each algorithm, some
problem instances of P run in polynomial time and others run in exponen-
tial time (there are lots of heuristic-based algorithms for real NP-complete
problems with this behavior). You can’t tell beforehand for any given prob-
lem instance whether it will run in polynomial or exponential time on either
algorithm. However, you do know that for every problem instance, at least
one of the two algorithms will solve it in polynomial time.

(a) What should you do?
(b) What is the running time of your solution?
(c) What does it say about the question of P = NP if the conditions

described in this problem existed?

17.13 The last paragraph of Section 17.2.3 discusses a strategy for developing a
solution to a new problem by alternating between finding a polynomial time
solution and proving the problem NP-complete. Refine the “algorithm for
designing algorithms” from Section 15.1 to incorporate identifying and deal-
ing with NP-complete problems.

17.14 Prove that the set of real numbers is uncountable. Use a proof similar to the
proof in Section 17.3.1 that the set of integer functions is uncountable.

17.15 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if an arbitrary program will print any output is un-
solvable.

17.16 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if an arbitrary program executes a particular state-
ment within that program is unsolvable.

17.17 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if two arbitrary programs halt on exactly the same
inputs is unsolvable.

17.18 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether there is some input on which two arbitrary
programs will both halt is unsolvable.

17.19 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether an arbitrary program halts on all inputs is
unsolvable.

17.20 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether an arbitrary program computes a specified
function is unsolvable.



584 Chap. 17 Limits to Computation

17.21 Consider a program named COMP that takes two strings as input. It returns
TRUE if the strings are the same. It returns FALSE if the strings are different.
Why doesn’t the argument that we used to prove that a program to solve the
halting problem does not exist work to prove that COMP does not exist?

17.6 Projects

17.1 Implement VERTEX COVER; that is, given graph G and integer k, answer
the question of whether or not there is a vertex cover of size k or less. Begin
by using a brute-force algorithm that checks all possible sets of vertices of
size k to find an acceptable vertex cover, and measure the running time on a
number of input graphs. Then try to reduce the running time through the use
of any heuristics you can think of. Next, try to find approximate solutions to
the problem in the sense of finding the smallest set of vertices that forms a
vertex cover.

17.2 Implement KNAPSACK (see Section 16.2). Measure its running time on a
number of inputs. What is the largest practical input size for this problem?

17.3 Implement an approximation of TRAVELING SALESMAN; that is, given a
graph G with costs for all edges, find the cheapest cycle that visits all vertices
in G. Try various heuristics to find the best approximations for a wide variety
of input graphs.

17.4 Write a program that, given a positive integer n as input, prints out the Collatz
sequence for that number. What can you say about the types of integers that
have long Collatz sequences? What can you say about the length of the
Collatz sequence for various types of integers?


